Friday, November 6, 2020

What is the value of joint replacement and why is this important during and after the pandemic?

 Creating a Value Dashboard for Orthopaedic Surgical Procedures

Value-based health-care delivery is a framework for restructuring our health-care systems with the goal of providing better outcomes for patients at lower cost. Value is determined by the quality of the outcome for the patient per dollar spentAssessing the value of health care is of huge and ever increasing importance during this era where the ability to give patients the care they need is and will continue to be severely strained by the costs and limitations imposed by the COVID19 pandemic. 


These authors developed a dashboard for assessing the value of surgical procedures.


Quality metrics included patient reported outcomes, complication rate, periprosthetic joint infection (PJI) rate, and 30-day readmission rate. 


Cost was defined as direct costi.e., all costs directly tied to the joint replacement. 


Interestingly, when comparing the relative quality and relative cost for five total hip surgeons from the same institution, spending more money did not yield better outcomes. In fact the lower cost providers had relatively better outcomes.



Comment: In the world of shoulder arthroplasty, quality of outcome for the patient can be measured in the same way, including patient reported outcomes, complication rate, periprosthetic joint infection (PJI) rate, and 30-day readmission rate. Direct costs include those related to imaging, implants, operating room time, length of stay, surgical fees, anesthesiologist fees, pharmacy and therapy. With the continuing advent of new technologies, this framework offers the opportunity to determine whether spending more money yields a better result for the patient.


Here's a recent related post:

Rethinking How We Spend Healthcare Dollars During—and After—the Pandemic

The coronavirus pandemic is having a profound effect on healthcare economics. A recent article in Health Affairs1 estimates that the median direct medical cost of a single symptomatic COVID-19 case can exceed $3,000 during the course of the infection alone. As of this writing, there have been almost 2.5 million confirmed cases in the US,2 with the number of known cases doubling every 2 months.3 These numbers suggest that the direct medical costs of the pandemic could easily exceed $8 billion. In addition, federal legislation enacted to help mitigate the effects of the pandemic is estimated to cost more than $480 billion over the next 10 years.4
Independently, the application of new technologies has also been pushing healthcare costs upward for decades. Long before the pandemic, a 2008 report from the  Congressional Budget Office concluded that “the bottom line from all these analyses is that the single most important factor driving the long-term increase in health care costs involves medical technology” and that “technological advances on average have brought major health improvements, but they often then get applied in settings where their benefits seem much less obvious.”5
In orthopaedics, we are strongly attracted to technology. In some cases – such as arthroscopy – technological advances enable less invasive, more effective, and safer treatments. In other cases, the patient benefits “seem much less obvious.” A recent review article makes the following observations about technology use in arthroplasty:
  • Computer-assisted technologies that are used in arthroplasty include navigation, image-derived instrumentation, and robotics.
  • Computer-assisted navigation improves accuracy and allows for real-time assessment of component positioning and soft-tissue tension.
  • It is not clear whether the implementation of these technologies improves the clinical outcome of surgery.
  • High cost and time demands have prevented the global implementation of computer-assisted technologies.
If we take shoulder arthroplasty as a general example, we see that prior to the introduction of routine preoperative CT scans, 3D planning, patient-specific instrumentation, metal-backed and augmented glenoid components, and short-stemmed and stemless humeral components, the results of anatomic total shoulder replacement for osteoarthritis were excellent, with 10-year revision rates under 5%.6,7 Such outcomes do not leave much room for improvement from newer technologies, each of which carries incremental costs of research, development, clearance by the FDA, marketing, learning curves, and potential product recalls and unanticipated long-term adverse effects.8 As Rosenthal et al. recently pointed out, “Since 3D planning and intraoperative navigation is more costly than 2D planning, and augmented glenoid components are more costly than standard glenoid components, the cost-benefit of these changes with respect to mid-term and long-term clinical outcomes and implant survival has not been ascertained.”9
Robust clinical data are needed to establish the incremental benefit to patients of each new technology in order to justify its associated incremental costs in comparison to legacy approaches that have been in place for years.
As a more specific example, the average cost of a preoperative shoulder CT scan ranges from $625 to $8,400,10 yet it remains to be demonstrated whether application of this technology leads to better shoulder arthroplasty outcomes in comparison to results obtained with conventional preoperative radiographic imaging.11 Agyeman et al.(see this link) recently concluded that  “although CT scans are associated with greater financial cost and exposure to radiation than radiographs, the literature has yet to describe the additional clinical value and/or potential cost-value benefit as a result of improved outcomes provided by the use of CT scans in patients undergoing total shoulder arthroplasty, even when integrated with virtual planning software and generation of patient specific instrumentation.” If a preoperative shoulder CT scan costs $1,000, the very low end of the aforementioned range, avoiding routine preoperative CTs in 3 shoulder-arthroplasty patients would save an amount of money equal to the average direct medical cost of a patient with COVID-19—$3,000.
We conclude that this is a good time to seriously reconsider how we apply new technologies in orthopaedics by asking a simple question: Are we spending our more-precious-than-ever healthcare dollars in ways that best serve the population as a whole?
References
  1. Bartsch SM, Ferguson MC, McKinnell JA, O’Shea KJ, Wedlock PT, Siegmund SS, et al. The potential health care costs and resource use associated with COVID-19 in the United States. Health Aff (Millwood). 2020;39(6):927-35.
  2. John Hopkins University CSSE. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at John Hopkins University (JHU). 2020 Accessed June 28, 2020. Available from: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.
  3. Hernandez S, O’Key S, Watts A, Manley B, Pettersson H, CNN. Tracking Covid-19 cases in the US. CNN, 2020 Accessed June 28, 2020. Available from: https://www.cnn.com/interactive/2020/health/coronavirus-us-maps-and-cases/.
  4. Congressional Budget Office. The budgetary effects of laws enacted in response to the 2020 Coronavirus pandemic, March and April 2020. 2020 Accessed June 28, 2020. Available from: https://www.cbo.gov/system/files/2020-06/56403-CBO-covid-legislation.pdf.
  5. Congressional Budget Office. Technological change and the growth of health care spending. 2008 Accessed June 28, 2020. Available from: https://www.cbo.gov/publication/24748.
  6. Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Annual report 2019: Hip, Knee & Shoulder Arthroplasty. Total Shoulder outcomes over two decades. Figure ST22, Page 16. 2019 Accessed June 28, 2020. Available from: https://aoanjrr.sahmri.com/documents/10180/668596/Hip%2C+Knee+%26+Shoulder+Arthroplasty/c287d2a3-22df-a3bb-37a2-91e6c00bfcf0.
  7. Neer CS, 2nd, Watson KC, Stanton FJ. Recent experience in total shoulder replacement. J Bone Joint Surg Am. 1982;64(3):319-37.
  8. Somerson JS, Neradilek MB, Hsu JE, Service BC, Gee AO, Matsen FA, 3rd. Is there evidence that the outcomes of primary anatomic and reverse shoulder arthroplasty are getting better? Int Orthop. 2017;41(6):1235-44.
  9. Rosenthal Y, Rettig SA, Virk M, Zuckerman JD. The impact of preoperative three-dimensional planning and intraoperative navigation of shoulder arthroplasty on implant selection and operative time: a single surgeon’s experience. J Shoulder Elbow Surg. 2020;Epub ahead of print.
  10. Poslusny C. How much does a CT scan cost? New Choice Health, Inc., Pensacola, FL, Accessed June 28, 2020. Available from: https://www.newchoicehealth.com/ct-scan/cost.
  11. Matsen FA, 3rd, Whitson A, Hsu JE, Stankovic NK, Neradilek MB, Somerson JS. Prearthroplasty glenohumeral pathoanatomy and its relationship to patient’s sex, age, diagnosis, and self-assessed shoulder comfort and function. J Shoulder Elbow Surg. 2019;28(12):2290-300.

To support our research to improve outcomes for patients with shoulder problems, click here.


To subscribe to this blog, enter your email in the box to your right that looks like the below



===
How you can support research in shoulder surgery Click on this link.

We have a new set of shoulder youtubes about the shoulder, check them out at this link.

Be sure to visit "Ream and Run - the state of the art" regarding this radically conservative approach to shoulder arthritis at this link and this link

Use the "Search" box to the right to find other topics of interest to you.

You may be interested in some of our most visited web pages  arthritis, total shoulder, ream and runreverse total shoulderCTA arthroplasty, and rotator cuff surgery as well as the 'ream and run essentials'